58,952 research outputs found

    Kondo Lattice Model with Finite Temperature Lanczos Method

    Full text link
    We investigate the Kondo Lattice Model on 2D clusters using the Finite Temperature Lanczos Method. The temperature dependence of thermodynamic and correlations functions are systematically studied for various Kondo couplings JK. The ground state value of the total local moment is presented as well. Finally, the phase diagrams of the finite clusters are constructed for periodic and open boundary conditions. For the two boundary conditions, two different regimes are found for small JK/t, depending on the distribution of non-interacting conduction electron states. If there are states within JK around the Fermi level, two energy scales, linear and quadratic in JK, exist. The former is associated with the onsite screening and the latter with the RKKY interaction. If there are no states within JK around the Fermi level, the only energy scale is that of the RKKY interaction. Our results imply that the form of the electron density of states (DOS) plays an important role in the competition between the Kondo screening and the RKKY interaction. The former is stronger if the DOS is larger around the Fermi level, while the latter is less sensitive to the form of the DOS.Comment: 7 pages, 7 figures; corrected typo

    IMAGINE Final Report

    No full text

    The Uncontrolled Social Utility Hypothesis Revisited

    Get PDF
    The experiment disentangles communication and social effect in face−to−face communication. The results question the previous interpretation of communication effects in ultimatum bargaining, and suggest that separate processes, both of a strategic and of an affective−social nature induce cooperative outcomes.

    Diffraction in QCD

    Full text link
    This lecture presents a short review of the main features of diffractive processes and QCD inspired models. It includes the following topics: (1) Quantum mechanics of diffraction: general properties; (2) Color dipole description of diffraction; (3) Color transparency; (4) Soft diffraction in hard reactions: DIS, Drell-Yan, Higgs production; (5) Why Pomerons interact weakly; (6) Small gluonic spots in the proton; (7) Diffraction near the unitarity bound: the Goulianos-Schlein "puzzle"; (8) Diffraction on nuclei: diffractive Color Glass; (9) CGC and gluon shadowing.Comment: Based on the lecture given by B.K. at I LAWHEP, Porto Alegre, Brazil, December 1-3, 200

    Leading Neutrons From Polarized Proton-Nucleus Collisions

    Full text link
    Leading neutron production on protons is known to be subject to strong absorptive corrections, which have been under debate for a long time. On nuclear targets these corrections are significantly enhanced and push the partial cross sections of neutron production to the very periphery of the nucleus. As a result, the A-dependences of inclusive and diffractive neutron production turn out to be similar. The mechanism of \pi-a_1 interference, which successfully explained the observed single-spin asymmetry of neutrons in polarized pp interactions, is extended here to polarized pA collisions. Corrected for nuclear effects it explains well the magnitude and sign of the asymmetry A_N observed in inelastic events, resulting in a violent break up of the nucleus. However the excessive magnitude of A_N observed in the diffractive sample, remains a challenge.Comment: 5 pages, 4 figures. Invited talk at DIFFRACTION 2016, September 2 - 8, 2016, Sicil
    corecore